Perceptual Color Differences

Their goal is to quantify the differences between colors as perceived by a human observer. However, the euclidean distance in the RGB or the XYZ space are not sufficient and the ΔE_{00} distance has been proposed for this task.

State of the art

Insufficiency of the XYZ space:

- Several transformations:
 - Complex
 - Non linear
 - 3 global approximations (one for each step)

Local Metric Learning

One transformation:

- Simple
- Non linear (Local transformations)
- Approximations depend of the local metrics

ΔE_{00}

RGB

Metric learning

Learning how to compare objects: learn a new space where some constraints are fulfilled, e.g. move closer circles of the same color and keep far away circles of different colors.

- Mahalanobis distance:
 \[\Delta(x, x') = \sqrt{\Delta(x - x')^T M(x - x') = \sqrt{(x - x')^T (x - x')}} \]

Learning Local Metrics

We learn $K+1$ metrics in different regions. To compute the distance between two colors, we simply have to select the matrix M corresponding to their region.

Algorithm 1: Local metric learning

- **Input:** A training set \mathcal{S} of patches, a parameter $K \geq 2$
- **Output:** K local Mahalanobis distances and one global metric

1. Run K-means on \mathcal{S} and deduce $K+1$ training subsets \mathcal{T}_j, $j = 0, \ldots, \bar{K}$
2. For $j = 0 \rightarrow \bar{K}$
 - Learn M_j by solving the convex optimization problem:
 \[
 \arg \min_{M_j} \sum_{(x, x') \in \mathcal{T}_j} [\Delta(x, x')^2 M_j(x - x')^2]
 \]
 - Local Empirical Risk:
 \[
 \epsilon_{\mathcal{T}_j}(M_j) = \frac{1}{2n_j} \sum_{(x, x') \in \mathcal{T}_j} \Delta(x, x')^2 M_j(x - x')^2 - \Delta E_{00}(x, x')^2
 \]
 - Local True Risk:
 \[
 \epsilon_j(M_j) = \mathbb{E}_{(x, x') \sim \Delta E_{00} \sim \mathcal{T}_j} \left[\Delta(x, x')^2 M_j(x - x')^2 - \Delta E_{00}(x, x')^2 \right]
 \]

Theoretical Guarantees

The bound holds with probability $1 - \delta$ with L_B, Δ_{max} and D constants. It is based on the uniform stability property used in each region (Stability and Generalization, O. Bousquet and A. Elisseeff, JMLR 2002) and on the Bretagnolle-Huber-Carol inequality for multinomial distributions (Weak Convergence and Empirical Processes, A. W. van der Vaart and J. A. Wellner, Springer 2000).

Performance of the Learned Metric in terms of Statistical Criteria

Dataset: 260 images of patches with known L*a*b*. We have taken the images with 4 cameras under different acquisition conditions.

Mean: \[
\frac{1}{n} \sum_{(x, x') \in \mathcal{T}} |\Delta(x, x') - \Delta E_{00}(x, x')| \]

STRESS: quadratic criterion which penalizes more large errors than small ones.

\[
\text{STRESS} = 100 \sqrt{ \frac{\sum_{(x, x') \in \mathcal{T}} \Delta E_{00}(x, x')^2 \Delta(x, x')^2}{\sum_{(x, x') \in \mathcal{T}} \Delta E_{00}(x, x')^2 \Delta(x, x')^2} } \]

In each case, for $K = 20$, our results are significantly better with a p-value lower than 0.001.

Generalization to colors

Generalization to cameras

Performance of the Learned Metric in a Segmentation Task

- In all cases, for $K = 20$, our results are significantly better with a p-value lower than 0.001.

Theoretical Guarantees

- True Risk: $\epsilon(M) \leq \hat{\epsilon}_T(M) + L_B \sqrt{\frac{2(2 + 1) \ln 2 n + 2 \ln(2/\delta)}{n}} + (K + 1) \left(\frac{2D^4}{\lambda n} + \frac{4D^4}{\lambda} + \Delta_{\text{max}} \left(\frac{2D^2}{\lambda^2} + 2\Delta_{\text{max}} \right) \sqrt{\ln \left(\frac{4(k+1)}{2n} \right)} \right)
- Empirical Risk: $\epsilon_T(M) = \mathbb{E}_{(x, x') \sim \Delta E_{00}} \left[\Delta(x, x')^2 M_j(x - x')^2 - \Delta E_{00}(x, x')^2 \right]$