BOUNDARY HOMOGENIZATION AND REDUCTION OF DIMENSION IN A KIRCHHOFF-LOVE PLATE

Antonio Gaudiello

DAEIMI, Università degli Studi di Cassino, via G. Di Biasio 43, 03043 Cassino (FR), Italia.
e-mail: gaudiell@unina.it

I present a joint work with Dominique Blanchard (Université de Rouen - France) and Taras A. Mel’nyk (Kyiv Nat. Taras Shevchenko University - Ukraine)

We investigate the asymptotic behavior, as \(\varepsilon \to 0 \), of the Kirchhoff-Love equation satisfied by the transverse displacement \(U_\varepsilon \) of the middle surface \(\Omega^+_\varepsilon \cup \Omega^-_\varepsilon \) (contained in the \((x_1, x_2) \)-coordinate plane) of a thin three-dimensional plate. The middle surface is composed of two domains. The first one \(\Omega^-_\varepsilon \) is a thin strip with vanishing height \(h_\varepsilon \) (in direction \(x_2 \)), as \(\varepsilon \to 0 \). The second one \(\Omega^+_\varepsilon \) is a comb with fine teeth having small cross section \(\varepsilon \omega \) and constant height, \(\varepsilon \)-periodically distributed (in direction \(x_1 \)) on the upper basis of the thin strip. The middle surface is assumed clamped on the top of the teeth, with a free boundary elsewhere, and subjected to a transverse load.

As \(\varepsilon \to 0 \), in the limit domain \(\Omega^+ \) of the comb, we obtain a continuum bending model of rods. The limit displacement is independent of \(x_2 \) in the rescaled (with respect to \(h_\varepsilon \)) strip \(\Omega^- \). The limit displacement meets a Dirichlet transmission condition between \(\Omega^+ \) and \(\Omega^- \), if \(h_\varepsilon \gg \varepsilon \), or if \(h_\varepsilon \simeq \varepsilon \) and the transverse loads on the thin strip are negligible. While, if \(h_\varepsilon \simeq \varepsilon \) and the transverse loads on the thin strip are strong enough, a discontinuity in the Dirichlet transmission condition appears.